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Abstract. Starting with an integrable nonlinear evolution equation, we investigate 
perturbations about a one-soliton solution, through the inversion of a linear equation 
for the first-order correction to the soliton solution. This inversion differs from past 
methods, as the proposed method takes place in coordinate space, not spectral space, 
while it employs some of the tools of inverse scattering theory. The method is applied 
to the Korteweg-deVries, nonlinear Schriidinger and sine-Gordon equations. The 
first-order corrections are then obtained. 

1. Introduction 

In this paper we investigate the use of a direct approach to studying perturbed non- 
linear evolution equations. The general procedure consists of expanding about a so- 
lution of the given unperturbed evolution equation, leading to a linear partial dif- 
ferential equation to be solved for the first-order correction. This equat,ion can be 
solved through the use of an expansion of the solution in an appropriate set of basis 
states. The states corresponding to discrete eigenvalues turn out to lead to secular 
behaviour, and they can be controlled by placing conditions on the soliton parameters. 
This method will be demonstrated for perturbations of the Korteweg-deVries equa- 
tion (KdV), the nonlinear Schrodinger equation (NLS), and the sine-Gordon equation 
in lightcone coordinates (SG). 

We are interested in the effects of weak perturbations of the equations, which are 
exactly solvable by the inverse scattering transform (IST). If we measure the strength 
of the perturbation by E ,  then by weak we mean that 0 < E << 1. Such perturbations 
can be studied directly in coordinate space, or the effects of the perturbations on the 
scattering data can be studied in spectral space. 

We refer to the first as the direct method. For example, one can use the method of 
multiple scales, or the derivative expansion method [20]. In this case the independent 
variable t is transformed into several variables by 

1 ,  = Ent n = 0 , 1 , 2 ,  . . .  (1) 
where each t ,  is an order of 6 smaller than the previous time. The time derivatives 
are replaced by the expansion 

00 

a, = Ccnatn 
n =O 
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thus, the name derivative expansion. At the same time the dependent variable is 
expanded in an asymptotic series 

00 

U = €"U, (3) 
n=O 

These expressions are inserted into the equation of interest. Equating the coefficients 
of each order in 6, one obtains a sequence of equations to be solved for un. 

As each order is solved, one has to ensure that there are no secularities in the 
solution, i.e. that the solution does not blow up in time, or become non-uniform in z. 
To guarantee this, conditions are placed on any free parameters which are at  hand, 
often leading to the dependence of these parameters on the slow time scale. In the 
following we will expand certain soliton parameters, such as the amplitude and soliton 
centre. For example, for the amplitude we could write 

A = A ,  + €Al + .  .. (4) 

and then assume that each term in this expansion depends on a slow time scale. The 
dependence on this time can then be determined in such a way as to eliminate any 
potential secularities in the solution. The equations used to determine this behaviour 
will be referred to as secularity conditions. 

This approach differs from the methods based on the perturbation of certain scat- 
tering data [22-26,30,40,41], as the proposed method takes place in coordinate space 
and not spectral space. However, it also differs from many of the usual direct meth- 
ods in that some of the tools of inverse scattering theory for the underlying nonlinear 
equation are used. Using this method, one can easily see how the secularities de- 
velop, obtain the first-order correction to the solution of the perturbed equation, and 
even study perturbations involving initial conditions that are close to a single-soliton 
profile. 

We should note that Kaup [28,29] has  used a similar approach in studying a 
perturbed sine-Gordon equation. In that work there was  no need to rely on the tools 
of inverse scattering, due to the approximations made. Several other authors have 
also studied soliton perturbations, using a direct approach without employing IST 
[4,34,35]. However, in all of these cases the authors use a quasi-stationary assumption, 
leading to results which are valid for short times, or small distances. Keener and 
McLaughlin [31,32] have used a direct approach by obtaining the appropriate Green 
functions for the nonlinear Schrodinger and sine-Gordon equations. In their work 
they do depend on inverse scattering. At  least in these two problems, our results 
agree. However, there has not been, to our knowledge, a satisfactory study of a direct 
perturbation of the KdV equation. 

In section 2 we present the steps involved in the proposed method. In the following 
sections we apply the method to three common integrable evolution equations. The 
method is tested on a damped KdV equation in some detail, showing how second-order 
terms can result in a first-order change in the soliton position. As other researchers 
have seen, the soliton decays exponentially, its width broadens, and the soliton is seen 
to slow down. At the same time a tail is formed, consisting of a shelf and decaying 
oscillations. 
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2. The general method 

Ichikawa, Iino and Wadati [17-191 have shown that Lax-pair operators for the squared 
eigenfunctions of the AKNS scheme [2] can be constructed using the Chen-Lee-Liu al- 
gorithm [6] for the KdV, mKdV, SG and NLS equations. Examining the time evolution 
operator and its adjoint, we are led to the linearised version of the particular equation 
of interest. Namely, we find that a particular combination of squared eigenfunctions 
is the solution of the homogeneous equation. Using the method of variation of param- 
eters, we can assume that the first-order solution of a perturbation problem is a linear 
combination of the independent solutions of the (linearised) homogeneous equation. 
The expansion coefficients are then obtained by taking inner products with the adjoint 
states. These adjoint states are found through the use of the spectral operator, and 
its adjoint, for the squared eigenstates, which can also be used to obtain the required 
orthogonality relations between the two sets of states. 

I t  should be noted that the spectral operator above is more commonly referred 
to as the recursion operator [9]. This operator and the operator from the linearised 
evolution equation form another Lax pair for the nonlinear evolution equation [6,45]. 
Knowing the eigenfunctions of the recursion operator and their connection with the 
original spectral problem, one can construct the appropriate basis for the perturbation 
theory. 

Before continuing to the details we outline the procedure, which will be used. 

I .  Perturbat ion expansion 

A We first obtain the linearised equation for the nonlinear equation under study by 
using an expansion U = uo + cul + . . . . One may also need derivative expansions 
for the time, or other variables, which will be useful in eliminating any secular 
growth that may result. 

II. Perturbat ion basis 

A By using the associated Lax pair for a given evolution equation, the time evolution 
of the squared eigenfunctions may be determined. 

B Now we use these results to get the correct combination of squared eigenfunctions, 
which satisfies the homogeneous linearised equation. 

C Once the correct form is known for the squared eigenfunctions, the adjoint states 
should be found. Firstly, find the appropriate operator to set up an eigenvalue 
problem, and then search for the solutions to the adjoint problem. These will be 
useful for determining completeness properties and orthogonality relations. This 
can easily be seen from an example. From 1I.A we have the solution, R ,  of the ho- 
mogeneous form of the linearised equation, which satisfies the eigenvalue problem 

LR = An. (5) 

LARA = A'RA. (6) 

We find the adjoint state, iIA and its associated eigenvalue problem: 

Multiplying the first equation by nA and the second by R,  and then subtracting, 
we have 

(A - A')RRA = RALR - RLARA. (7) 
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Hopefully, one can rewrite the right-hand side as a divergence, in the same manner 
as Kaup has done for the states associated with the Zakharov-Shabat problem [27]. 
Integrating over t, one obtains 

Using the asymptotic behaviour of the Jost solutions, the orthogonality relation 
between R and RA can be obtained. 

( A  - A’>(RlRA) = flELp, f, = RALR - RLARA. (8) 

III. Inversion of linear operator 
Now, insert an expansion in the independent solutions of the homogeneous lin- 
earised equation into the first-order equation, using the known completeness of the 
states. Here we need to have all of the independent solutions of the homogeneous 
problem, i.e. the homogeneous linearised equation. We have the independence of 
the states from the orthogonality relations, but to ensure that we have all of them, 
we need a completeness statement. This is easy for the cases to be considered, as 
we only need to show how our expansion is related the known results [27,40,44]. 
However, for other problems this would have to be proved. 
Use the orthogonality relations to solve for the expansion coefficients, thus obtain- 
ing the desired answer. Here we assume that u1 can be expanded in the above 
complete set, and then we solve for the expansion coefficients. As an example, we 
treat a special case. Let the first-order equation be given by 

Assuming u1 to be of the form 
Cu, = Fl. (9) 

u1 = / fRdA (10) 

Fl = / f,RdA. (11) 

then operating on it by C, might give 

Now, multiplying by the adjoint and integrating over z will lead to equations 
for f(A). These equations can be solved for the expansion coefficients, using the 
appropriate initial conditions. 

IV. Secularity conditions 
Finally, we insert these results in the expansion for ul and demand that ul be 
bounded in t .  This can lead to certain secularity conditions, which determine how 
the soliton shape and position are affected by the perturbation. In general, these 
are related to the bound states of the linear operator C. 

3. The perturbed KdV equation 

We first consider the direct approach to solving the perturbed KdV equation 

subject to the initial condition 

For small perturbations, we expect that the solution will remain close to the soliton 
solution for some time. Therefore, the solution we seek will be roughly a soliton with 
a slowly changing shape and location plus a correction. 

ut + 62121, + U,,, = rF[u] (12) 

(13) u(z, 0) = 2q2 sech’ qz. 
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9.1. Perturbation expansion 

We assume an asymptotic expansion of the form 

u( t , t )  = uo(r,t) + EU1(Z, t )  + . . . (14) 

where we take 

uo(x,t) = 2q2 sech 2 (  q c - - f co - x,) . (15) 

Defining the two time scales, T = t and T = dl we assume that the soliton parameters 
q, xo and x1 depend only on the slow scale 7. 

Introducing the expansion (14) and the two time scales into equation (12), we 
obtain an expansion of (12) in powers of E .  Setting the coefficients of each order of E to  
zero, we obtain a system of equations to be solved for U,. The lowest-order equation 
is found as 

where we have defined 

1 
v = sech4 4 = q (c - -xo - z,) . 

E 

This equation will be satisfied if and only if 

xos  = 4q2. 

The first-order equation then becomes 

where C is the linearised KdV operator 

e z a, - 4q3a4 + 6'ladu0 + q3a;. 

3.2. Perturbation basis 

The problem is now to invert this operator. We discuss the details of this inversion 
for the general problem 

c u ,  = F (21) 

c a, + 6aZu, + 8:. (22) 

where is given in ( z , t )  coordinates by 

This can be done by noting the relationship between the KdV equation, the associated 
'Lax pair', and the linearised operator we are seeking to invert. Having established 
this relation, we will then proceed to discuss the inversion of the operator for the 
special case of uo = 2q2 sech' q(z - 5 ) .  
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I t  is well known that the KdV equation ( q  = tio) 

Qt + 6qq, + Qzzz = 0 

v,, + ( A 2  + q)v  = 0 

vt + v,,, + 3(q - X2)vz = yv. 

(23) 

(24) 

(25) 

is an integrability condition for the equations [3] 

Namely, vtto = vZzt  provided q satisfies (23) and A, = 0. The  constant y is determined 
from the assumed asymptotic behaviour of U in the regions where q vanishes. In 
particular, if we assume that  v - eiXZ (U - e-iXZ ) as I + oo(-oo), then y = -4iX3 
(4iX3). Keeping with standard notation [3], we will denote such Jost solutions as g2 
( 4 2 ) .  

If we operate on the function f = a 2 ( v 2 )  with L from (22), using equations (24) 
and (25), we find that f satisfies the eigenvalue problem 

L f  = 2yf. (26) 

These eigenfunctions can be used as a basis in which to expand the solution of equation 
(21). The  unknown expansion coefficients can then be determined using orthogonality 
relations between the basis functions and their adjoints. 

In the Schrodinger eigenvalue problem there is a continuous spectrum for X 2  > 0 
and possible bound states for X2 < 0. The eigenstates for the continuous spectrum of 
L are easily found from these A; however, the bound states d2v21Ak are not sufficient 
t o  complete the set of states [26,27,40]. We find the states we require from the work 
of Sachs [44]. If f(t) is continuous and L',  and if q satisfies 

CO 

II P I l p  J (1 + t 2 ) q ( 4  d z  < - 
-a3 

then Sachs shows that f (x) can be expanded as 
1 

where 

X - iq 
.(A) = - 

X + i q  
X 1  = iq. 

Here we have borrowed some notation from Newel1 [40]. 

{aA, @f, A?}. These basis states are related to  the Schrodinger eigenfunctions by 
The  complete set for perturbations about a one-soliton solution is given by 

GA(z,t;X) I a,+; @ P ( I , t )  E d,+b,2lX, (31) 
1 

A ? ( Z , t )  5 axaz&1x, - 2 a ~ a & ; l ~ , .  1 (32) 
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The  adjoint states t o  these are given by 

Before returning to  the inversion of the linearised KdV equation we need two prop- 
erties of the basis states. Firstly, equation (26) gives the result of operating on the 
basis states with C : 

COA = -8iA30A 
CO: = -8iXfO.f 
LA: = -8iX:A: - 48iXtO.f. (35) 

Secondly, the non-zero inner products between the basis states and the adjoint states 
are found as: 

where we define the inner product by 

3.3. Inversion of linear operator 

We can now proceed with the inversion of the linearised KdV equation (21) for per- 
turbations about a one-soliton solution. We assume that u1 can be expanded in the 
complete set of states as 

Inserting this expansion into equation (21), we find that 

which is just an eigenfunction expansion for F in our basis. 
Taking inner products on both sides of this equation with the adjoint states and 

using the orthogonality relations (36) and (37), we obtain the following first-order 
differential equations for the expansion coefficients: 

f, - 8iX3f = (310) 
2niAa2( A)  

fit - 8v3f1 + 48iv2g, = -2iv(FlAl) 

911 - 8v3g1 = -2iv(3101). 
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These equations can easily be solved, yielding 

fl(t) = fl(0)exp(8q3t) - 48iq2tgl(0)exp(8q3t) - 2iq dt’(31Al) exp[8q3(t - t’)] I’ 
- 96q3 I’ dt’ l’ d t” (3 /0 , )  exp[8q3(t - t ” ) ] .  

This completes the inversion of the linear operator. We note that in studying 
perturbations about a single soliton, where the perturbation is turned on at  t = 0, 
U = u0; i.e. U, = 0 for n > 1. So, in equations (44)-(46) the initial values of 
the expansion coefficients are zero. However, it is possible to study perturbations of 
initial profiles which are close to a single soliton. Namely, at 1 = 0, 

The resulting correction to the soliton motion is found using the 
thermore, the bound state contribution in (47) can easily be shown to be a result of 
small changes in the soliton amplitude and position by using equation (49) below. In 
the discussions below, we will assume that the initial profile is a single soliton. 

(47) 

above results. Fur- 

3.4. Secularity conditions 

Using the basis states for a one-soliton solution (see appendix A ) ,  we can rewrite the 
last two terms in (39), 

as 

B = il[sech2 4 + ;b(sech2 4)+] + il(sech2 4)+ (49) 

where the new coefficients are given by 

t 
g1 G 1 dt’(31 sech2 4) 

t 
k1 E -il dt’(F1[4+8q3(t-t’)]sech2d+tanh$).  

When 3 is independent of time, these coefficients will grow in time, unless we 
impose the secularity conditions 
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Applying these conditions to the first-order equation (19) we obtain the slow time 
dependence of the soliton parameters [lo]: 

2 tor = -49 

F[uo][4 sech2 4 + tanh 41 d4. 

The first equation determines the change in the soliton amplitude (2q2) and width 
(l /q).  The second of these equations gives the leading-order velocity, while the last 
equation will give the correction to the velocity of the soliton. 

3.5. F i r s t -order  correc t ion  

From this analysis one obtains the correction u l ,  

In general, for dissipative perturbations this correction will account for the develop- 
ment of a decaying oscillatory tail and possibly a shelf, due to the pole at  X = 0. The 
height of this shelf can be determined from an analysis of ul. Asymptotically, we have 
that [lo, 13,231 

l o o  
u1 - - / F[uO] tanh2 q5dq5. 

47? --CO 

A careful analysis shows that the presence of this shelf leads to an additional 
tanh’ 4 term in (56) [lo, 13,231. This important effect results from using higher-order 
terms in the perturbation analysis. Using asymptotics, one can show that equation 
(56) should be replaced by [13] 

xls  = i J F[u0][4 sech’ 4 + tanh 4 + tanh’ 41 d4. 
4 4  - w  

(59) 

This result agrees with other results [23,34], and has been found to be supported by 
numerical experiments [ 111. 

3.6. Example :  damped  K d v  equation 

We will now turn to the analysis of the damped KdV equation, using the perturbation 
method presented above. In the course of this analysis we will show how the second- 
order results are needed to obtain equation (59) in the last section, and we will present 
the first-order correction. 

The form of the perturbed equation, which we are using, is given as 

ut + ~ U U ,  + U,,, = -I’u = -EYU.  (60) 

We will assume an E expansion in U :  
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where uo is the one-soliton solution given by 

In order to obtain the slow time dependence of the amplitude and phase shift, or 
soliton centre, we will introduce a slow time scale and expand the soliton parameters. 
We assume the expansions 

1 

E 
5 = - (to + € X 1  + E2X2 + * * .). 

Defining the two time scales, T = t and r = c t ,  we assume that the soliton parameters 
depend only on T. Rewriting the needed derivatives in the new variables (q5,T, T), in 
(6011 as 

and inserting the expansion for U in the resulting expression, will give to the lowest 
two orders: 

where we have defined v = sech' d.  
As before, the lowest-order equation has uo as a solution if and only if 

XOr = 47);. (69) 

Inserting this into the first-order equation, we have 

Now, we are ready to invert this equation. 
We recall that the bound state contribution to the solution will contain secular 

terms unless we require the secularity conditions (52) and (53). Using the driving 
terms in (70) the time dependence of the soliton parameters is found as 
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This leads to  the first-order correction as 

We now want to integrate the soliton parameter equations ( 7 1 )  and ( 7 2 ) .  Assuming 
that y is constant, equation ( 7 1 )  integrates to 

?lo(') = @oexP(-$yt) 60  = vo(0). ( 7 4 )  

Using the relation to the amplitude in (64), we have to leading order in  e :  

A = 26: exp(-icyt) + O(c2). ( 7 5 )  

This is the same result as has been reported in the literature. 

integrate zOr in (69) to obtain 
This leaves us with the evaluation of the correction to the soliton positon. We can 

to = 4 q i ( s )  ds = - 3% [exp(- if$) - 11. 
Y 

However, in order to integrate (72) for the correction to the soliton position, we need 
information about vl, which can only be obtained from an analysis of the next order. 
Thus, for very short times, the centre of the soliton is given by ( 7 6 ) .  

From the analysis so far, we have information as to how the soliton will change 
under the above damping. From the multiple scale results, we see that the amplitude 
will decay for 7 > 0, and it will grow for y < 0. Similarly, we find from the width, 
l / q ,  that the soliton will broaden for y > 0. The velocity of the soliton is given by 

( 7 7 )  
1 - zOr = 4iji exp(-icyt). 
€ 

We see that for y > 0 the soliton tends to slow down and come to a rest; however, long 
before this higher-order changes in the amplitude will lead to a first-order correction 
to the location of the soliton centre and its velocity. 

In appendix B we look at  the long time asymptotics of the first-order solution in 
( 7 3 ) .  The result is that the first-order solution 'ul behaves asymptotically as 

-3/4 2 z - z o  
3710 6 6 7 1 ~  (3t)'l3 3 ( 3 t ) ' / 3  - -  + (3) exp [-- (-r"] for 0 < < < 4q;t ( 7 8 )  

for < < 0 

for large times, and in the region where tanh' 4 N 1. Here we have defined 

(79) 2 < = z - z o  2,  E 5 - 4 q o t .  
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Thus, the major contribution comes from the region from t = 0 to the solitary 
wave position, x = 5 = E - ~ x ,  + xl .  This is the shelf first found numerically by 
Leibovich and Randall [37], and later analytically by Kaup and Newell [30]. Note that 
we have obtained the same height, using our solution, as they had: 

Y 
I 

211 - -- 
370 

0 < x - z, < 4q3. 

We can now proceed to second order for the sole purpose of obtaining the correction 
needed in equation (72). Using the first-order results, the second-order equation is 
given by 

t u 2  = -$q0qlyv - 4r70vl,v + i 4 r 7 0 r l l ~ v 4  - 24rlov17u+ 
2 3 + $y4uI4 - 6rioqq,+  - Y U ~  - 3 6 ~ 0 ~ 1 ~ 1 ~ +  + 2qotzTv+  - 111, 

- 240qiq:vvg - 12051:r/2~~4 + 6 ~ ~ q 1 ~ 1 ~ ~ 4  + 24t1:~:~+ - 2O$VTV#44 

- lOq:rl2V,#+#, + 2451:512V4 - 3677~~1VUi+ + 12$q~Ui+ - 3qO%ul,+4#. 2 

(81) 

To obtain the time dependence of q l ,  we need to employ the condition (52). Since 
the resulting expressions become complicated and uninformative, we will use the large 
time behaviour of the first-order solution. We will assume 

where O(x) is the Heaviside step function and the condition on ti is consistent with the 
assumptions made in obtaining the asymptotic form for ul.  In doing this we find that 

ly 

I 
q1- -%' 

Inserting this asymptotic result into equation (72), we find 

Y 
X I r  N --. 

3710 

(83) 

This is the same result as is obtained using equation (59). 

grated form for the soliton centre in (76): 
For completeness, we further integrate this equation and add it to the fully inte- 

1 3% 1 
X N  - - x o + x l  = -[exp(-?cyt)-I] +--[~-exp(?jcyt)]. 

E Y 2 60 

However, we must remember that this result relies on the approximation of large times. 
Using the 

asymptotic form of ul, which is given in equation (58), we find that the correction to 
the soliton position is provided by equation (59) [lo,  131. Again, this is an asymptotic 
result, but holds fairly well for dissipative perturbations. Karpman and Maslov have 
obtained this same correction [24], though the approximation that they used did not 
clearly show that the additional term in (59) waa due to higher-order terms in the 
perturbation analysis. 

The above analysis can be generalised to arbitrary perturbations. 
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4. The perturbed NLS equation 

4.1. Per turba t ion  expansion 
We now turn to the perturbed nonlinear Schrodinger equation (NLS) of the form 

As before we look for solutions of this equation which are close to the one-soliton 
solution 

qo = -2iqexp[i(P - <8/q) ]  sech 0 (87) 

pt = -4(<2 + q 2 )  5, = 4<* (88) 

= Qo + EQ1 (89) 

8 = 2q(c - 5) 
where, to leading order, 

In order to find such solutions, we introduce the expansions: 

1 
P = (Po + E P 1 )  

- 1  
t =  - 2 0  + 2 ,  

E 

and assume that the soliton parameters (7, P , < ,  5) depend on a slow time scale T = Et. 
Inserting this information into equation (86), we find to leading order that qo 

satisfies the NLS equation provided 

CO7 = 4< Po, = -4(t2 + q 2 ) .  (92) 

iq1, - Qlrr - 2&; - 4qoq;q, = Fl - s, = Pl (93) 

The first-order equation we have to solve is 

where Fl is the leading-order contribution from the perturbation term in (86) and S, 
is the contribution from the slow time scales: 

S,  = [(4iq<t1, + 2iqp1, + 271,)~ - 2i<,~v - 4q2x17vg + 2q,0v,]e-'~ (94) 

(95) 

where 

v sech 8 6 E <8 /q  - P.  
The aim is to solve equation (93) for q,;  however, this equation also involves q; .  

By using the complex conjugate of equation (93) we can rewrite it as a linear operator 
operating on a twedimensional vector. Namely, we can write the equation as 

where the linear operator is given by 

In order to find the correction to the soliton we need to invert the linear operator. 
In the next section we show how this can be done using some tools from inverse 
scattering theory. 
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4.2. Perturbat ion basis 

It  is well known that the nonlinear Schrodinger equation is a compatibility condition 
for the Lax pair [3] 

Namely, one obtains from U,, = vtz with A, = 0 the NLS equation 

iq, - q,, - 2tq12q = 0. (100) 

Using these equations, one finds that 

(id, - 8,")~: = 4qq'v: - 2q2v; 

(ia, + a:>v," = -4qq.v; + 2 q v 2 v T .  

From the form of C we have that 

C (:!;) = 0. 

Therefore, we have found the homogeneous solutions to our first-order equation. In 
principal we can now use variation of parameters to solve for q l .  

Implementing this scheme involves solving for v in equations (98) and (99), given 
the q in equation (87). Following Ablowits and Segur [3], we find two linearly inde- 
pendent solutions of (98): 

-r] exp[i(Xz + p - (O/q) ]  sech 0 ( -  exp(iXz)[X - ( + iq tanh e] 

exp(-iXz)[X - ( - iqtanh e] ( z e x p [ - i ( X z  + p - @/q)] sech 8 

(104) 

(105) 

Vqt, t ;  A )  = 

1 
?j (z , t ;  A) = A - c  

where 

c E ( + iq. (106) 

However, these forms do not satisfy equation (99). Assuming from (88) that 

e, = -8g p, = -4(c2 + q 2 )  (107) 

$* - M$ = 2iX2$. 

we find that 

(108) 
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We could easily adjust 
that equation (103) is modified as 

to satisfy (99), however, by using the form in (104), we find 

This is an eigenvalue problem for our operator, with eigenvalues -4A2 and eigenfunc- 
tions R z ( *: ) 

In summary, we have related the solutions of the associated spectral problem 
for the NLS to the eigenfunctions of our linear operator. The Jost solutions $(zl t ;  A), 
$ ( z , t ;  A), which are given in equations (104) and (105), are related to the eigenfunction 
of our operator by the eigenvalue problems: 

-*: * 

In the next section we would like to use this basis of eigenfunctions to solve for 
the first-order correction in the perturbation theory from equation (96). We will 
assume that ( q ! )  can be expanded in this basis and solve for the unknown expansion 
coefficients. However, the basis R,b is not complete. Kaup has provided the tools 
needed to complete the basis [27]. Namely, we will need to add the discrete states 

q1 

fll(z,t) = R(z, t ; t  + is) 
b , ( z , t )  = G(z, t ; t  - is) 

A l ( z l t )  = aAR(z,t ; t  + iq) 

i l ( z , t )  = a,G(z,t;< - is). 
(1 12) 

(113) 

For these states the action of the linear operator is found to be 

Also, associated with this basis are the adjoint states: 

RA(z,t;A) = ( & , c $ : )  b A ( z , t ’ ; A )  = ( f $ $ # )  (1 18) 

and their associated discrete states, which are defined like those in equations (112) 
and (113). Here 0 and 6 are the following solutions to equation (98): 

(119) 

1 
exp(-iXz)[X - t - iq tanh e] 

( & exp[-i(Az + P - te/v)] sech 6 

A - < *  c$(x,t; A) = 
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Finally, we will need the orthogonality relations between the basis and adjoint 
states for the inversion of the linear operator. These are [27] 

where 

x - (* .(A) = - .(A)= - 
x - (* A - - c  

4.3.  Inversion of the linear operator 

We are now in a position to invert our linear operator and solve for the first-order 
correction to the solution of the perturbed NLS equation. We want to solve the general 
equation (96), which we write as 

We assume that Q can be expanded in our basis as 

Now apply C to this, using the equations from the previous section for the operatar 
acting on the basis states. This results in 

F = .CQ = Lm -[(if, - 4A2f)n + (if, + 4X2j)fi] + (ifl, - 4Xff1 - 8X,g1)R1 
dX 
x 

+ (igl, - 4 ~ : g , ) ~ ,  + (if,, + 4 ~ y ~ f ~  + 8X;j l ) f i l  + (igl, + 4 ~ ; ~ g , ) A , .  
(128) 

This is just another expansion in  the basis. We can use the orthogonality prod- 
ucts to pull out the coefficients in this equation. Doing this leads to the first-order 
equations: 
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These equations can be integrated to find the expansion coefficients, leading to the 
solution of equation (126). Therefore, we have inverted the linear operator and can 
return to perturbation theory. 

4 . 4 .  Secularity conditions and the soliton parameters 

We have a method for solving for the first-order correction to the perturbation prob- 
lem. A careful analysis of the discrete contribution in equation (127) will show that 
these terms will grow in time unless we force f, = 0,  g, = 0, f, = 0 and 3, = 0. This 
leads to the conditions 

These secularity conditions can be applied to the pertubat,ion PI = F, - S, in 
equation (93). Computing the inner products in (136) with F = P,, and using the 
definitions of the adjoint states, we find that the secularity conditions lead to equations 
for the slow time dependence of the soliton parameters: 

- 1 O3 d0Re[F,ei6]w 
V 7 - 2 L  

, P o 0  

l o o  
Plr = 1 d0Im[F1ei6](0we + W) - 2(t,, 

-m 

where we have defined w E seche. We note that these are the same results as given 
by Karpman [22]. 
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4.5. First-order correction 

In the previous section we have eliminated the bound state correction to the perturbed 
solution. The first-order correction is now 

where the expansion coefficients are obtained from equations (129) and (130) as 

. t  
f(A,t) = 2 1 (PllnA) exp[-4iA2(t - t ’)] dt‘ 

0 

* t  
f(A,t) = -+ / (P,lfiA)exp[4iX2(t - t’)] dt’. (143) 

a 0  

Recalling that P, = F, - S, , we find that S, does not contribute to the coefficients 
in (142) and (143). Therefore, we can replace the P, by F, in these equations. Using 
equation (141), and the forms for the basis and adjoint functions, we can write a 
formula for q l .  After some work, we have 

{ $ I ( p ) * ( p  + i tanh - I ( - p )  sech2 0) 

-- {p21(p ) *  exp[4ig2t(p2 + l)](p + i tanh 

- I ( - p )  exp[-4iq2t(p2 + l)] sech2 0) (144) 

where 

00 

I ( p )  E / dO[(F, ei6)*(p + itanhB)2 - ( F ,  ei6)sech2 e] eip@. (145) 
-00 

In equation (144) the first term can be responsible for additional shifts in the 
modulus and velocity of the solution of the perturbed problem. The second term is 
a radiation term, which will acount for oscillations leaving from the soliton centre, 
as well as oscillations at  the peak of the solution. We note that there is no need to  
obtain corrections to equations (139) and (140) in the same manner as we had done 
for the KdV equation, since a shelf does not form in the perturbed NLS solution. This 
is because there is no p = 0 pole in the integrands in (144). 

5. The perturbed sine-Gordon equation 

5.1. Perturbation expansion 

We finally demonstrate this method for the perturbed sineGordon equation in light- 
cone coordinates, which is given by 

U,, - sin U = EF.  (146) 
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We begin by expanding U as 

U = uo + €Ul  + .  . . (147) 

about about a single-soliton solution; in particular, we use the kink solution: 

(148) 

and we allow the soliton parameters to  depend on a slow time scale 7 = c t .  Inserting 
this information into the perturbed equation (146), we find that the leading-order 
velocity is 

1 
xos = -- 

4v2 
(149) 

and the first-order equation, which we need to  solve, is given by 

CUI = F,  - 477,~ - 4vr4w$ + 8 7 7 2 ~ 1 , ~ $  E F (150) 

where 

C = azt - COS u0 w sech 4. (151) 

5.2. Perturbation basis 

As in the other cases, we need the Lax pair [l]: 

(i/4X) cos U (i/4A) sin U ) 
(i/4X)sin U -(i/4X) cos U 

U, = M u  M =  ( (153) 

Cross differentiating, v,, = U,,, and requiring A, = 0, we obtain the unperturbed 
equation ( E  = 0 in (146)). 

Consider the squared states, 

Differentiating with respect to  t ,  equations for (U:), and ( v i ) t  can be obtained. Adding 
and subtracting the resulting equations, we find the states which satisfy the homoge- 
neous version of equation (146). Denoting the states by R ,  and the linear operator by 
C, we have 

(154) n = + c = a,, - cosuo. 

For these cases, CR = 0. 

order solution, u l ,  of this equation are of the form R = 
We see that the appropriate independent states in which to  expand the first- 

+ 2/22, As discussed in 
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appendix A ,  Kaup has shown that we need to include the bound states R, = R(Xl )  
and A, = 8,R(X,) to form a complete basis. Depending on whether v = 4, or v = $, 
the standard Jost solutions [3], we have two possible basis sets: 
(A) 

e-iB 
R = 4: + 4; = (iX - q ) 2  

1 R - - exp(+) sech 4 ' - 2  

[q2 - X2 + 2iX17 tanh 41 

i A1 = -- exp(-d,) 
217 

(155) 

eiP 
n=*:+*;= 

R - - exp(q50) sech 4 

[q2 - X2 - 2iXq tanh 41 ( i X  - q ) 2  

1 
' - 2  

i A l  = +- exp(40) 
2r7 

where 

t 1 p = 2Xx - - 
2 X '  

1 4, = -zo + 2, - - 
€ 27 

We will use basis set (A) in what follows. 

5.3. Inversion of the linear operator 

Now, assume that U ,  can be written as a linear combination of R: 

(157) 

where a possible sum over the discrete spectrum is suppressed for now. We operate 
on U, with C to obtain 

In this case we do not get R in the integrand, as we had seen earlier for the KdV and 
NLS perturbations. However, we can differentiate R = ( v ;  + v ; )  with respect to z, and 
use (152) to find 

R, = 2i~(v,2 - v : ) .  (160) 

Writing 6 = (vz - v f ) ,  we now have for (159): 

3 = J2iX f,6 dX. (161) 
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Now the fz can be extracted from the integral by using the adjoint state associated 
with fi and the respective orthogonality conditions. 

Using the above ideas, we now assume that 

Inserting this into equation (150) yields 

F = / 2iXftfi dX + [2iX1f, + 2iglz]fil + 2iX1g1 z A l .  (163) 

Here we have used (160) and have defined 

In order to extract the expansion coefficients from equation (163), we need the adjoint 
states to (164), which are given by 

These adjoint states are just the states we had provided in (156). 

which we discuss in appendix A: 
The orthogonality relations can be obtained from those derived by Kaup in [27], 

Multiplying (163) by the adjoint states and integrating, we obtain first-order equa- 
tions for the expansion coefficients. Solving these equations with the initial conditions 
given at  t = 0, we find 
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5.4. Secularity conditions 

From equations (156) and (162) we can write the solution in the form 
CO 

U l ( ” J )  = LCO dX f ( A ,  t )R(z ,  , t ;  A)  + B ( l , t )  

where we have defined the bound state contribution 

= - 1 exp(-$,,) [fl sech 4 - is1 (22 - & t )  sech 41 
2 

From equations (168) and (169) we see tha t  f l  and g1 can grow in time. We can 
get rid of any growth in time in these bound state terms by requiring 

g1 zz 0 + (F I sech4)  = 0 

f l  E 0 =+ (F l r sech  4) = 0. 

Inserting F from equation (150), we find the resulting expressions 

1 “ O  
qr = 4 / Fl sech d d d  

xlr  = 1 1  F , d s e c h d d d .  

-00 

CO 

4 -00 

5.5. First-order correction 

The  resulting first-order solution is now given by 

Finally, we note tha t  we can rewrite this equation in the form 

CO 

u l ( z , t )  = 1, dXf(X,O)R(X) + 1‘ dt’ / C O  d2’F(r ’ , t ’ )G(+, t ; t ’ , t ’ )  
-CO 

where 

Here G ( z ,  t ;  I’, t’) is the Green function for the problem 

C G ( + , t ; d , t ’ )  = 0 1’ > t 
lim G(+ , t ;  d, t’) = 6(r - 2’). 
t ’ - t  

This problem was solved by Keener and McLaughlin [31], who had obt.ained the same 
Green function (178). 
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6. Discussion 

In this paper we have presented a direct approach to the study of soliton perturbations. 
In the three cases examined, we have obtained the usual results for the effects of the 
perturbation on the soliton shape and position. We have also obtained the first-order 
correction. 

In examining the damped KdV soliton, we have shown how the appearance of a 
shelf can affect the soliton position. The usual result for this effect is shown to be 
produced actually by higher-order terms in the perturbation analysis. In examining 
this effect for the damped KdV equation, we have seen that it is possible, in principle, 
to push the analysis to obtain second-order results. 

This method has been used to study other perturbations such as the damped KdV 
equations of Ott  and Sudan [42], Hamiltonian perturbations of the KdV [lo], and 
the damped stochastic KdV equation for spatially dependent noise [lo,  121. Recently, 
the effects of truncation error in  discretisations of the KdV and NLS equations were 
also studied [14-161. These errors can be treated as perturbations of the respective 
equations, and the perturbation method can be used in discussions of the usefulness of 
such perturbations, as well as for investigating the first-order oscillations which may 
result. A further analysis of the first-order corrections will be published elsewhere. 

This method can be used to study perturbations of other integrable nonlinear 
evolution equations, which have not been examined to date. We are looking into 
perturbations of loop solitons [36], the coupled nonlinear Schrodinger equation [38], 
and some twedimensional equations, such as the Kadomtsev-Petviashvili [21]. The 
perturbation basis for these equations are easily found through the connection of the 
Lax pair, the recursion operator and the linearised evolution operator [45]. 
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Appendix A. One-soliton solution of the Schriidinger eigenvalue problem 

In order to compute the appropriate eigenfunctions for the basis of the perturbation 
expansion of u1 in section 3, we need to solve the equations 

v,, + ( A 2  + q)v = 0 

vt + v,,, + 3(q - A2)v, = yv 

for the Jost functions &, q2,  which satisfy the boundary conditions 

exp[-iA(t - zo)] 
a exp[-iA(z - zO)] + b exp[iA(z - z0)3 

2 + -CO 

I + +-CO 
(A3) 

and 

exp[iA(z - zO)] 
a exp[iA(z - zO)] - b' exp[-iA(z - zO)] 

2 + +CO 

2 -). --CO. 
(A41 
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We consider the one-soliton case 

q = 2q2 sech' q ( t  - 477'1 - to) = 2q2 sech2 4. (A5) 

The general solution to  the Schrodinger equation (Al) ,  using this q,  is given by [7] 

We must also require that this solution satisfy the time evolution given by (A2). This 
along with the boundary conditions (A3) and (A4) will determine A , ( t )  and A-,(t). 

We let v = v1 + v - ~ ,  where 

Then we have 

C,, = -icrXC, 

U,, = C,, [q tanh 4 + icrX] + 4q4C, sech' 4 

v,, = C,,[q tanh 4 + iaX] + q2C, sech' 4. 

Finally, if we substitute (Al)  into (A2) for v,,,, we obtain the equation 

ut = (4x2 - 2q)v, + q,v + yv. (A9) 

Inserting the expressions (A8) into (A9), we find the time dependence of C,: 

cat = [ - 4 i a ~ ~  + y ] ~ ,  ( A W  

which gives the general solution for U ,  

v ( z , t )  = A[q tanh 4 + iX] exp[-iX(t - to) + (y - 4iX3)t] 

+ B[q tanh 4 - iX]  exp[iX(z - to) + (7 + 4iX3)t]. ( A l l )  

For a fixed time, we look at q52 as t -* -cc and $2 as z + cc in ( A l l )  to  find 

Applying the boundary conditions (A3) and (A4) to  the general solution yields 
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The eigenfunctions, which we have discussed in the text, and their adjoints may 
now be calculated. They are 

cPl(z,l) = $exp(8q3t)sech2 4 (A17) 
1 

Xl(x,t)  = - exp(8q3t)[(i - 4 - 4q3t)sech2 4 - t a n h 4  - 11 (A181 
2‘7 

exp(2iX4/~ + 8iXq2t) 
(iX - q ) 2  

cpA(x,t; A)  = 2 [-v3 tanh3 4 + 2iX’7’ tanh’ 4 

+ (2X2’7 + q3) tanh 4 - i(X3 + A$)] (A191 

(‘420 1 
(A21) 

‘7 
2 

= -- exp( -8q3t) sech2 4 tanh 4 

xf = iexp(-8q3t)[sech2 d - ( f  + 4 + 4q3t) sech’ 4 tanh 41 

q l ( x , t )  = 4 exp(-8q3t)sech2 4 

exp(2iX$/q + 8iXv2t) 
(iX - q ) 2  q x ,  1;  A) = [v2 tanh’ 4 - 2iXq tanh 4 - A’] (A22) 

(‘423) 
i 

rl(z,t) = -exp(-8v3t)[(i + 4 + 4 ~ 3 t ) s e c h 2 4 +  t a n h 4 +  11 (A24) 2‘7 

2 exp(-2iX+/q - 8iX17’t) 
(iX - q ) 2  

@(x, t ;  A) = [-q3 tanh3 4 - 2iXq2 tanh’4 

+ (2X277 + v3)  tanh 4 + i(X3 + X77’)] (-425) 
Uf = - iqexp(8q3t) sech2 6 tanh 4 (A26) 

T: = -i e ~ p ( 8 ~ ~ t ) [ s e c h ’  I$ + ( f - q5 - 4q3t) sech’ 4 tanh 41 (A271 

Al(x, t )  = - - e ~ p ( 8 q ~ t ) [ ( q 5 + 4 ~ ~ t ) s e c h ’ 4 +  tanh4]  (A28) 

A t  = 2iexp(-8q3t)[sech2 4 - (4 + 4q3t) sech’ 4 tanh 41. (A29) 

i 
77 

The orthogonality relations for these states can be found through the use of the 
Zakharov-Shabat eigenvalue problem [40] 

v lX  + iXv, = qv, vZt  - iXv, = -v l  

V Z X X  + ( A 2  + q)vz = 0. 

The basis functions are of the form U;+, while the adjoint functions are of the form 
W E .  The various inner products, which we need, are of the general form 
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From (A30) and (A31) we have 

4~ 2 2  v2 = 2(v: - 2 i ~ v ~ v ~ )  - ( v i ) , ,  - 2qv23 
(U: - ~iXv,v,), = -q(v2),. 2 

(A331 

(A341 

Writing similar equations for w(A’), we have 

Using (A34) we find that  the right-hand side of this equation is a divergence [40]: 

Integrating from -R to R, we obtain the general relation 

1 [w;~v:, - w2vZtX 2 2  - 2v;(w: - 2iX’~,w~)]!!~. (A37) 
R 

dxvi ,wi  = 
4( A2 - X’2) 

Using the Jost functions for the Zakharov-Shabat eigenvalue problem with the 
boundary conditions 

we can compute the required inner products. In particular we find for the states 
derived above, the non-zero products are: 
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Appendix B. Asymptotics for the damped Kdv solution 

The first-order solution for the damped KdV was given in equation (73). We now 
compare this solution with those given by Kaup and Newell [30] and Knickerbocker 
and Newell [33], and carry out an asymptotic analysis for large times. 

Recalling the first-order solution 
03 

(B1) 

where 

y[exp(-8iXq2t) - exp(8iX3t)] 
f(xlt) = 12Xa2(X)(q2 + X2) sinh(nX/q) 

and from appendix A we write 

CO 5 - 4qzt. (B3) 

Combining these equations, and partially carrying out the differentiation, we have 

O0 [exp(-8iXq2t) - exp(8iX3t)] exp[2iX(x - zO)] 
Xa2(X)(q2 + X2)  sinh(nX/q) 

1 - -- 

This can be written as the sum of the two terms 

- 47 bo exp[2iX(x - xo)] 
- -7 l, a(X)  sinh(nX/q) 

exp(-8iAq2t) - exp(8iX3t) 

- to)] 

Xa2(X)(q2 + X2)sinh(nA/q) 

The first term gives the integral obtained originally by Kaup and Newell 1301, and - - .  

later compared to numerical simulations by Knickerbocker and Newell [33]. 

writing it as 
We begin the analysis of equation (B4) by carrying out the differentiation 

h(X) 
y [exp(-8iXq2t) - exp(8iX3t)]exp[2iX(z - zO)] 

U I = d w  X(q2 + X2) sinh(nX/q) 

h(X) = 2iXq2 tanh2 4 - iX(q2 + X2)  + 2qX2 tanh 4 + q3 sech2 9 tanh 4. 

and 

B7) 
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Following Kaup and Newell, we seek the solution for large x,t, while keeping yt fixed. 
The leading contribution may be found by invoking the Riemann-Lebesgue lemma 
[43], which tells us that  i f f  is L1(-co,m), then 

1, 

lim f(x)  cos n x d z  = 0. 
n4m J-, 

Thus, the major contribution to  the integrals in (B5) and (B6) comes from values of X 
near A = 0. Taking the limit X + 0, we have in the region of q5 such that  sech' 4 0 

d(2X). O3 sin 2x(x - xo - 4q2t) - sin ~ X ( Z  - to + 4$t) 
2x U l  - - ' (2 tanh'd - 1 )  

6 x 7  
(B8) 

We note that  this is the almost same answer as Kaup and Newell had obtained; the 
difference is the factor 2 tanh' 4 - 1 instead of their tanh2 q5 [30 ] .  

The first term in (B8) can be integrated using [8] 

s inmx  n 
2 

dx - = - sgn(m) 

to  give 

The second term can be integrated by relating it to the Airy function 151 

and making the transformation 

7- = ( 3 t ) ' / 3 X  

2 = ( 3 t ) 4 3 ( 2 !  - to). 

Integrating equation ( B l l ) ,  we have 

2a  1'' Ai(%) dz 

= 1: d r  lo d r  cos( f r3  + ZT) 
sin 2X(z - xo - 49'2) 

2x - $nsgn(z - xo). 

Therefore, we have for the first-order solution 

(I3141 

Y u1 - -(2 tanh2 d - 1) nsgn(+ - xo - 479)  - i n s g n ( z  - xo) - 2n 6" Ai(*) dz) . 
6atl 
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The  term in the brackets was also obtained by Knickerbocker and Newell [33]. 
We now make use of the asymptotics of the Airy function 

6-114 

2 6  
Ai(s) - - exp[- $s3l2] S + o O  0315) 

and the Mellin transform [5] 

M [ f ( 4 ,  tl = 1” ?Pf(Y) dY 

to complete this analysis. We first consider the integral 

I = lo Ai(z)dz 

for to positive. I t  can be written as 

I = 1“ Ai(%) d t  - lr Ai(t)dz = M[Ai(t) ,  11 - 

where M [ f ( + ) , t ]  is the Mellin transform. For the Airy function we have [5] 

A i ( t ) d t  (B19) l: 

giving M[Ai(z), 11 = 1/3. 

the asymptotic expression for the Airy function [5] 
We can obtain the large behaviour of the second integral in equation (B19) using 

2-114 

2J;i 
Ai(%) - - e ~ p [ - g t ~ / ~ ]  s + ca 

since for large to the range of the integration variable is always large. Inserting (B21) 
in the second integral, and integrating by parts, we have 

For zo < 0, the analysis is similar. Rewriting the integral, we have 

b o l  03 W 

Ai(-%) d t  = - 1 Ai(-%) d t  + izo, Ai(-r) d t  

= -M[Ai(-r), 11 + (E3231 
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We make use of the expressions (B16) and 

32t/3- 7/6 

7r 
M[Ai(-z),t] = r( $t)r(  $( t  + I))  sin( irt + i 7 r )  

M[Ai(-z), 13 = $ (I3251 

to obtain 

1 
dz Ai(-%) - - ~ z o ~ - 3 / 4 c o s [ ~ ~ z o ~ 3 / 2  + $7r] + O ( ~ Z ~ I - ~ / ~ ) .  (B26) c J;; 

Putting these two cases together, we have the required expression for the equation 

27r 
2~ 1'' Ai(%) dz - 7 sgn(zo) 

-J;; zo -3/4 exp( - $ P ~ ~ / ~ )  + o( zo -3/4 exp(- 5 zo 312)) zo > 0 
zo < 0. 2J;;lz01-3/4 C O S [ ~ J Z , ) ~ / ~  + $4 + 

Inserting this into (B14) we arrive at the asymptotic form for the first-order solution 
u1 : 

Y y o ) - 3 / 4 e x p  [-? (z-50)3/2] 

2 z-5,  
3770 6 J ; ; ~ o  (3t)'/3 3 (3t)'/3 

6J;;vo (3t)1/3 3 (3t)'/3 

-3/4 

- -  ' + A (-) exp [-- (-,""I for 0 < < < 477it (B28) 

-3/4 

for t < 0 

for large times, and in the region where tanh2 4 E 1. Here we have defined 

(B29) 2 ( = z - Z 0  20 E 5 - 4'T)ot. 

Appendix C. Orthogonality relations for the sine-Gordon bases 

In section 5 we have shown that the proper states in  which to expand the first order 
solution of the perturbed sine-Gordon equation in lightcone coordinates were of the 
form 4: + 4: or $: + $J;. That such an expansion is allowed depends on the closure 
of these states. Also, certain orthogonality relations were needed, equations (166), 
in order to compute the expansion coefficients. In this appendix, we shall review 
some of Kaup's results on the closure of the squared eigenfunctions of the Zakharov- 
Shabat eigenvalue problem [27]. The assumed information, which we needed for the 
sine-Gordon problem, will then be derived from these results. 
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The starting place is the Zakharov-Shabat eigenvalue problem (152), and the Jost 
solutions, which are defined through the boundary conditions (6)-(9). Employing the 
bra-ket notation of Dirac, Kaup obtains the complete set of states [27] 

and their adjoints 

The non-zero inner products between these states are 

where 

6: is the Kronecker delta, and 6(A-  A’) is the Dirac delta function. For the one-soliton 
case .(A) is given by (30). Finally, Kaup expresses an expansion of a two-component 
function 
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N N 
+ c [ f k l l , A k )  +gkI1p~Ak)]+ c [ f k l l , x k ) + s k I 1 p , x k ) l .  ( C W  

k = l  k=l 

Now, we want to derive the orthogonality relations in (166). Recall that in one 
basis, we have fi = $2” - $:, while in the second basis, fi = 4; - 4;. Our aim is to 
integrate the product hAh, where fiA = 4; + &, $f + $22, respectively. Noting that 
for the sine-Gordon, 

we can get this product using the first basis, by 

d(A’) OA(A)  
2fifiA = ( ( A A @ ) )  

= [\IA(-A’) + *(A’)][Q(-A) - *(A)]  

and through the second basis by 

Expressing this in the Dirac notation, and combining (C18) and (C19), we have the 
general product 

where the upper sign refers to the first basis 

and the lower sign refers to the second basis 

6 = (4; - +:)(A) OA = ($12 + &)(A) 

Integrating (C20) over t, and using .(-A) = h(A) and equations (C7)-(C9), gives 

(f iA(A’)@(A)) = * .na2(A)b(A - A’). (C23) 

Similarly, we find 
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In order to find the products with A, = dxfixl, or At = a,f2fl, we note that in 
the first basis 

A1 = -(42P,-A1) - (+IlP,A,) (C25) 

and 

Af = -(2P,A112) + (lP,AIz) 

A, = (lP, A, I.) + (2P, Alz) 

Af = (tllP, A,) - (42P, A,). 

and for the second basis 

and 

Using this and the general product (C20), we find 

Similarly, we have 

((231) 

All other inner products vanish. Thus, we have derived the stated orthogonality 
relations (166) from the known results of Kaup. We now turn to the expansion (C16). 

Using the orthogonality relations (C7)-(C13), Kaup computes the expansion co- 
efficients as 

1 
( A l I W  = T q  (AtIAl) = 0. 
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In our problem, we take N = N = 1. 
In order to simplify the discussion, we will only consider the sum over the contin- 

uous spectrum. The analysis for the full expansion proceeds in a similar fashion. We 
start with the expansion in a coordinate representa t ion  as 

Noting that 

Then the expansion (C40) becomes 

h ( A ) [ ( 4 1 , 4  + ( 4 2 ,  -41 
" dA 

(C44) 

Therefore, we have found an expansion for g(z) in terms of the first basis for the 
perturbed sine-Gordon problem: 
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In Kaup’s analysis, he started by defining the states (Cl)-(C4) in terms of the 
Jost functions $J and 4.  He could just as well have used 4 and 6 to develop his 
expansions and orthogonality relations. The results of such an analysis would lead to  
an expansion of g(z) in terms of the second basis, replacing (C45). 

As for completeness, Kaup had established the identity operator 

(for the case of compact support), and used the Marchenko equations from the inverse 
scattering formalism t o  establish that (C46) operates on L 2 ( - w ,  cm). Thus, he proved 
that any f(z) in L 2 ( - c m , w )  can be expanded as in (C16). In particular, we have 
chosen f (z)  = (g(z),g(z))T. Thus, the bases for the perturbation expansion for the 
sine-Gordon equation are also complete with respect to  &(-a, CO). 

In summary, we have shown that the assumption concerning completeness and the 
derivation of the orthogonality relations can be proved using Kaup’s results in [27]. 
In a parallel analysis the same statements could be obtained for the bases involved in 
the perturbation methods for the mKdV and NLS equations. 
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